Loading...
News Article

Researchers Confine Light in a Single Atom

News

Artistic impression of the squeezed light (plasmon) in between the metal and graphene, separated by a one-atom-thick dielectric. Courtesy of ICFO.

Using graphene, researchers in Spain, Portugal and the US have found a way to confine light to a space that is one atom thick. The ability to confine light to such a small space could pave the way for ultra-small optoelectronic devices. Details of their work appear in the journal Science.

Previous work has shown that while metals can compress light below the diffraction limit, this additional confinement typically comes at the cost of additional energy loss. A team from Barcelona's Institute of Photonic Sciences (ICFO), the University of Minho in Portugal, and the Massachusetts Institute of Technology (USA) has addressed this issue by building a graphene-insulator-metal heterostructure that can overcome the trade-off between confinement and losses.

The researchers fabricated a nano-optical device from 2D heterostructures. They used a graphene monolayer, which acted as a semimetal, and stacked onto it a hexagonal boron nitride (hBN) monolayer, which served as an insulator. Graphene was used because it can guide light in the form of plasmons "” oscillations of electrons interacting with light.

On top of the graphene-hBN structure, researchers deposited an array of metallic rods.

Researchers sent IR light through the device and observed how plasmons in between the metal and the graphene propagated. They reduced the gap between the metal and the graphene to see if the confinement of light remained efficient, that is, it did not incur additional energy losses. Experiments showed that even when a single monolayer of hBN was used as a spacer, the plasmons were excited by the light and were able to propagate freely while being confined to a channel just on atom thick. The light was confined vertically (as propagating plasmons) between the metal and the graphene.

"At first we were looking for a new way to excite graphene plasmons. On the way, we found that the confinement was stronger than before and the additional losses minimal. So we decided to go to the one-atom limit with surprising results," said ICFO researcher David Alcaraz Iranzo.

Researchers were able to switch the plasmon propagation on and off by applying an electrical voltage. Using this capability they demonstrated the control of light guided in channels smaller than one nanometer.

This shift in optical field confinement could further the exploration of extreme light-matter interactions in ways not previously possible.

"Graphene keeps surprising us: nobody thought that confining light to the one-atom limit would be possible. It will open a completely new set of applications, such as optical communications and sensing at a scale below one nanometer," said ICFO professor Frank Koppens.

Such heterostructures could provide a powerful and versatile platform for nanophotonics. The atomic-scale "toolbox" of 2D materials could be used for devices where both photons and electrons would be controlled down to the nanoscale, and could lead to new devices, such as ultrasmall optical switches, detectors, and sensors.

Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: