Loading...
News Article

Researchers Confine Light in a Single Atom

News

Artistic impression of the squeezed light (plasmon) in between the metal and graphene, separated by a one-atom-thick dielectric. Courtesy of ICFO.

Using graphene, researchers in Spain, Portugal and the US have found a way to confine light to a space that is one atom thick. The ability to confine light to such a small space could pave the way for ultra-small optoelectronic devices. Details of their work appear in the journal Science.

Previous work has shown that while metals can compress light below the diffraction limit, this additional confinement typically comes at the cost of additional energy loss. A team from Barcelona's Institute of Photonic Sciences (ICFO), the University of Minho in Portugal, and the Massachusetts Institute of Technology (USA) has addressed this issue by building a graphene-insulator-metal heterostructure that can overcome the trade-off between confinement and losses.

The researchers fabricated a nano-optical device from 2D heterostructures. They used a graphene monolayer, which acted as a semimetal, and stacked onto it a hexagonal boron nitride (hBN) monolayer, which served as an insulator. Graphene was used because it can guide light in the form of plasmons "” oscillations of electrons interacting with light.

On top of the graphene-hBN structure, researchers deposited an array of metallic rods.

Researchers sent IR light through the device and observed how plasmons in between the metal and the graphene propagated. They reduced the gap between the metal and the graphene to see if the confinement of light remained efficient, that is, it did not incur additional energy losses. Experiments showed that even when a single monolayer of hBN was used as a spacer, the plasmons were excited by the light and were able to propagate freely while being confined to a channel just on atom thick. The light was confined vertically (as propagating plasmons) between the metal and the graphene.

"At first we were looking for a new way to excite graphene plasmons. On the way, we found that the confinement was stronger than before and the additional losses minimal. So we decided to go to the one-atom limit with surprising results," said ICFO researcher David Alcaraz Iranzo.

Researchers were able to switch the plasmon propagation on and off by applying an electrical voltage. Using this capability they demonstrated the control of light guided in channels smaller than one nanometer.

This shift in optical field confinement could further the exploration of extreme light-matter interactions in ways not previously possible.

"Graphene keeps surprising us: nobody thought that confining light to the one-atom limit would be possible. It will open a completely new set of applications, such as optical communications and sensing at a scale below one nanometer," said ICFO professor Frank Koppens.

Such heterostructures could provide a powerful and versatile platform for nanophotonics. The atomic-scale "toolbox" of 2D materials could be used for devices where both photons and electrons would be controlled down to the nanoscale, and could lead to new devices, such as ultrasmall optical switches, detectors, and sensors.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: