+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Researchers See Promise in New Optical CMOS Process

News

Photo by: Amir Atabaki

Researchers at five US-based universities and institutes have reported the development of a new optical CMOS process that they believe could speed the creation of photonic integrated circuits (PICs) and other related optical components. According to reports in "˜Nature' and "˜IEEE Spectrum,' the teams have added thin layers of polycrystalline silicon atop features patterned using existing CMOS technologies. They believe the process could speed the development of faster photonic circuits benefiting many datacom and telecom applications.

"What we're talking about is integrating optics with electronics on the same chip," says Milos Popovic, a professor of electrical and computer engineering at Boston University. The method entails adding "a handful" of processing steps to the standard way of making microprocessors in bulk silicon and should not add much time or cost to the manufacturing process, Popovic says.

Popovic worked on the development at Boston University together with teams at the Massachusetts Institute of Technology; the University of California, Berkeley; the University of Colorado, Boulder; and SUNY Polytechnic Institute, Albany, NY. Their approach adds a thin layer of polycrystalline silicon on top of features already on the chips. The same material is used on chips as a gate dielectric, but in a form that absorbs too much light to be useful as a waveguide.

Researchers explained that to make a material more suitable for photonics, they adjusted the deposition process, altering factors such as temperature, to obtain a different crystalline structure. They also took trenches of silicon dioxide, already used to electrically isolate transistors from one another, and made them deeper, to prevent light from leaking out of polycrystalline silicon features into the silicon substrate.

Using the approach, teams built chips with all the necessary photonic components"”waveguides, microring resonators, vertical grating couplers, high-speed modulators, and avalanche photodetectors"”along with transistors with 65-nm feature sizes. In this scenario, a laser light source would sit outside the chip. The photodetectors rely on defects that absorb the photons. The chips were built at the 65 nm node because that is what the semiconductor manufacturing research fab at SUNY Albany is capable of, but Popovic says it should be easy to apply the same processes to transistors being made with much smaller features.

Many of the same researchers had come up with a process for integrating photonics on chips in 2015, but that only worked on more expensive silicon-on-insulator processors. The vast majority of chips are made using bulk complementary metal-oxide-semiconductor technology, which this new technique addresses.

The reason this is all necessary is that computer makers are increasingly relying on multicore chips; graphical processing units used for gaming and artificial intelligence can contain hundreds of cores. The copper wires that carry data between cores are the major bottleneck for speed, as well as producing a lot of waste heat.

"A single electrical wire can only carry 10 to 100 gigabits per second, and there's only so many you can put in," Popovic says. By contrast, splitting the signal into many wavelengths could allow a single optical fiber to carry 10 to 20 terabits per second. And at the tiny distances between microprocessors, optical losses are basically zero, so the system requires less power than copper.

This new method could lead to chips with increased processing power that would allow greater use of artificial intelligence techniques for pattern recognition. That could bring the facial recognition used in iPhones to less expensive smartphones, Popovic says, as well as create low-cost LIDAR sensors for self-driving cars.

EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: