Loading...
News Article

Quantum Dots Could Drive PIC Advances

News

Researchers from the University of California at Santa Barbara (USA) are focused on new quantum-dot lasers for PIC applications. Photo illustration by: Peter Allen

Thousands of miles of fiber-optic cables crisscross the globe transmitting ever-increasing amounts of data. But when signals arrive at a data center en route to their final destination they encounter a silicon bottleneck: slower electron based signal pathways instead of photonic "˜superhighways,' according to a 27 March article in the journal APL Photonics.

To break through this bottleneck, researchers from the University of California, Santa Barbara are working to integrate photonics into silicon devices, creating new photonic integrated circuits (PICs) and hybrid lasers based upon quantum dots. Such lasers could save as much as 20 to 75 percent of the energy consumed by existing indium phosphide (InP) based solutions, according to Justin Norman, a graduate student at UC Santa Barbara. "It's a substantial cut to global energy consumption just by having a way to integrate lasers and photonic circuits with silicon," he noted.

Since silicon does not have ideal properties for constructing lasers, researchers turned to III-V materials and a hybrid integration approach.

Initially, the researchers struggled to find a functional integration method, but ultimately settled on quantum dots because they can be grown directly on silicon, Norman said. The quantum dots, only a few nanometers wide, are small enough that they behave like individual atoms. When driven with electrical current, electrons and positively charged holes become confined in the dots and recombine to emit light"”a property that can be exploited to make lasers.

The researchers made their III-V quantum-dot lasers using molecular beam epitaxy (MBE). They deposit the III-V material onto a silicon substrate, and its atoms self-assemble into a crystalline structure. But the crystal structure of silicon differs from that of III-V materials, leading to defects that allow electrons and holes to escape, degrading performance. Fortunately they found that by packing quantum dots together at high densities, more than 50 billion dots per square centimeter, they capture electrons and holes before all particles are lost.

Quantum-dot lasers have many other advantages, Norman said. For example, quantum dots are more stable in photonic circuits because they have localized energy states that behave in a similar fashion to those of individual atoms. They can also function on less power because they don't need as much electric current. Moreover, they can operate at higher temperatures and be scaled down to smaller sizes.

In just the last year, the researchers said they made considerable progress thanks to advances in crystal growth techniques, Norman explained. Their latest lasers can operate at 35 degrees Celsius without much degradation; the lifetime of the new lasers could be up to 10 million hours, they note.

The researchers said they are now testing lasers that can operate at 60 to 80 degrees Celsius, the more typical operational temperature range of data center or supercomputer switches. They're also working on designing epitaxial waveguides and other photonic components, Norman said. "Suddenly," he said, "we've made so much progress that things are looking a little more near term."

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: