+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Holography for Improved Heads-Up Displays

News

Researchers at the University of Arizona have announced that they have developed an innovative holography-based approach to creating heads-up displays for automobiles and other applications that could soon make these displays much easier to see with a large eye box, providing significantly greater flexibility than what existing technologies allow; the researchers reported their findings in the Optical Society journal, Applied Optics.

Heads-up displays are transparent devices used in cars, light trucks and other vehicles to project key information on the vehicle's windshield such as essential operational details, warnings and alerts, driving directions, or flight data in the case of aircraft. Current heads-up displays have a small "˜eye box,' meaning that the displayed information partially or wholly disappears if users shift their gaze too much beyond the recommended "˜sweet spot' for visibility.

"A heads-up display using our new technology installed in a car would allow a driver to see the displayed information even if he or she moved around or was shorter or taller than average," said research team leader Pierre-Alexandre Blanche of the University of Arizona (USA).

In their Applied Optics article, the researchers demonstrated a functional prototype heads-up display that uses holographic optical elements to achieve an eye box substantially larger than what is available without the holographic element. The researchers say that their approach could be turned into a commercial product in as little as a few years and might also be used to increase the size of the displayed area.

"Increasing the size of either the eye box or the displayed image in a traditional heads-up display requires increasing the size of the projection optics, relay lenses and all the associated optics, which takes up too much space in the dashboard," said first author Colton Bigler, a doctoral student in Blanche's laboratory. "Instead of relying on conventional optics, we use holography to create a thin optical element that can be ultimately applied onto a windshield directly."

Using holograms to make optics

The same laser light interactions used to create the holograms that protect credit cards from forgery can also be used to fabricate optical elements such as lenses and filters in light-sensitive materials. These holographic elements are not only smaller than traditional optical components but can be mass produced because they are easily fabricated.

For the new head-up display, holographic optical elements redirect light from a small image into a piece of glass, where it is confined until it reaches another holographic optical element that extracts the light. The extraction hologram presents a viewable image with a larger eye box size than the original image.

"We are working with Honeywell to develop these displays for aircraft, but they could just as easily be used in cars," Blanche said. "Our approach requires no expensive equipment and no new materials need to be developed. Furthermore, the display can be completely integrated into a standard car windshield."

After performing optical simulations, the researchers developed a laboratory version of their head-up display that created an eye box seven times larger than the original image. They then made a working prototype that displayed flight information on a piece of glass that can be part of the transparent enclosure that covers cockpits. Using the prototype, they were able to almost double the eye box of the original image and showed that the image doesn't disappear until the user looks beyond the edge of the hologram. They also demonstrated that the presented image appears in the far field, meaning that observers don't need to change their focus to see the displayed information.

"It's possible to create a much larger eye box by increasing the size of the injection and extraction holographic elements, the only limitation is the size of the glass displaying the image," Blanche continued. "Our work is a good example of how holography can be used to solve many types of optical problems for various applications. A similar approach might also be useful for augmented reality headsets, which also merge computer-generated images with views of the outside world but with a display that is close to the eye."

Although the researchers demonstrated their approach using one color, they say that it could be expanded to create full-color heads-up displays. They are also working to use the same approach to create a much larger image that is extracted by the holographic element to increase the size, or field of view, of the display.

EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: