Loading...
News Article

Researchers Share Recipe for "˜DIY' Hyperspectral Imagers

News

Researchers used 3D printing to make an inexpensive and small hyperspectral imager. Feasibility tests showed that 3D printing can be used to produce prototype parts sufficiently accurate for optical systems. Shown is the transmission grating holder: (1) detector lens, (2) 25 à— 25 mm2 600 grooves/mm transmission grating, (3) 3D printed grating holder, and (4) Collimator-slit-front-optics assembly.Courtesy of Fred Sigernes, University Centre, Svalbard.

Norwegian researchers from the University Centre in Svalbard have used 3D printing and low-cost parts to create an inexpensive hyperspectral imager that is light enough to use on drones. The visible-wavelength hyperspectral imager (HSI) weighs less than half a pound, according to researchers, and can be built for as little as (USD) $700. Traditional hyperspectral imagers can cost tens of thousands of dollars and are both too bulky and heavy for drone-based aerial applications.

The research team has provided directions for creating the imagers; the paper is available through the Optical Society of America's Optics Express newsletter. The new imagers employ the so-called "˜push-broom' technique, an approach that uses precise line-scanning to build a spectral image. The researchers added a stabilization system to their setup so that a drone's movement would not distort the image as it was being generated.

"Push-broom hyperspectral imagers typically require expensive orientation stabilization," said researcher Fred Sigernes. "However, you can now buy very inexpensive gyroscope-based, electronically stabilizing systems. The advent of these new systems made it possible for us to make inexpensive hyperspectral imagers."

The dispersive element housings were printed using a thermoplastic 3D printer combined with S-mount optical components and commercial off-the-shelf camera heads. The 3D printer eased the process of making the custom optics holders needed for the imagers.

"Making items in metal is time-consuming and can be very expensive," said Sigernes. "However, 3D printing with plastic is inexpensive and very effective for making even complex parts, such as the piece needed to hold the grating that disperses the light. I was able to print several versions and try them out."

Four models were constructed, each with a mass less than 200 g and a spectral range in the VIS to NIR part of the electromagnetic spectrum. The bandpass ranged from 1.4 to 5 nm.

Researchers tested one of their prototypes aboard an octocopter drone equipped with a two-axis electronic stabilizing system. The hyperspectral imager performed well and was able to detect landscape features, such as vegetation and bodies of water. Three test experiments with motorized gimbals to stabilize attitude showed that the instruments were capable of push-broom spectral imaging from various platforms, including airborne drone to handheld operations and three-axis electronic stabilizing systems. For one experiment, researchers swept the imager across a computer screen displaying a fruit collection, acquiring 571 spectrograms in 22 s.

These feasibility tests showed that 3D printing could provide the level of accuracy needed to produce prototype parts for optical systems. The printed plastic parts were lightweight and strong enough to keep the overall system light and small. Researchers suggest that after testing, metal versions of 3D printed parts could be ordered if desired to create imagers that would be more durable.

Although the new DIY imagers don't provide the sensitivity of traditional hyperspectral imagers, their performance is sufficient for mapping terrain or detecting ocean color in daylight. The researchers are now working to improve their imager's sensitivity by making slightly larger versions of the instruments that would still be small and light enough for use on drones. Improving the sensitivity of the imagers would result in higher-quality data.

"There are many ways to use data acquired by hyperspectral imagers," said Sigernes. "By lowering the cost of these instruments, we hope that more people will be able to use this analytical technique and develop it further."

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: