Loading...
News Article

GLOBALFOUNDRIES Extends Silicon Photonics Roadmap

News

GLOBALFOUNDRIES has revealed new details of its silicon photonics roadmap to enable the next generation of optical interconnects for datacenter and cloud applications. The company has now qualified the industry's first 90nm manufacturing process using 300mm wafers, while also unveiling its upcoming 45nm technology to deliver even greater bandwidth and energy efficiency.

GF's silicon photonics technologies are designed to support the massive growth in data transmitted across today's global communication infrastructure. Instead of traditional interconnects that transmit data using electrical signals over copper wires, silicon photonics technology uses pulses of light through optical fibers to move more data at higher speeds and over longer distances, while also minimizing energy loss.

"The explosive need for bandwidth is fueling demand for a new generation of optical interconnects," said Mike Cadigan, senior vice president of sales and ASIC business unit at GF. "Our silicon photonics technologies enable customers to deliver unprecedented levels of connectivity for transferring massive amounts of data, whether it's between chips inside a datacenter or across cloud servers separated by hundreds and even thousands of miles. When combined with our advanced ASIC and packaging capabilities, these technologies allow us to deliver highly differentiated solutions to this marketplace."

GF's silicon photonics technologies enable the integration of tiny optical components side-by-side with electrical circuits on a single silicon chip. This "monolithic" approach leverages standard silicon manufacturing techniques to improve production efficiency and reduce cost for customers deploying optical interconnect systems.

GF's current-generation silicon photonics offering is built on its 90nm RF SOI process, which leverages the company's world-class experience in manufacturing high-performance radio frequency (RF) chips. The platform can enable solutions that provide 30GHz of bandwidth to support client side data rates of up to 800Gbps, as well as long-reach capabilities of up to 120km.

The technology, which had previously been manufactured using 200mm wafer processing, has now been qualified on larger-diameter 300mm wafers at GF's Fab 10 facility in East Fishkill, N.Y. The migration to 300mm enables more customer capacity, greater manufacturing productivity, and up to a 2X reduction in photonic losses to improve reach and enable more efficient optical systems.

The 90nm technology is supported by a full PDK for E/O/E co-design, polarization, temperature and wavelength parametrics from Cadence Design Systems, as well as differentiated photonic test capabilities including five test sectors from technology verification and modeling to MCM product test.

A Roadmap for Tomorrow

GF's next-generation monolithic silicon photonics offering will be manufactured on its 45nm RF SOI process, with production slated for 2019. By leveraging the more advanced 45nm node, the technology will enable reduced power, smaller form factor, and significantly higher bandwidth optical transceiver products to address next generation terabit applications.
Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: