+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

All-Silicon, High-Gain Laser Advances Photonic Integration

News

Researchers at Fudan University have demonstrated an optically pumped, all-silicon (Si) distributed feedback laser that overcomes traditional efficiency issues. Researchers used active layers of high-density silicon nanocrystals to develop the laser, which provides high optical gains, overcoming the low efficiency that has been historically exhibited in silicon laser emissions.


According to the researchers, theirs is the world's first all-silicon laser. They believe this optically pumped laser could lead to the realization of an electrically pumped, all-silicon laser for integrating microelectronics and optoelectronics, thus enabling integrated silicon photonics.

To enhance silicon emission intensity, the researchers developed a film growth technique for high-density silicon nanocrystals. They then designed and fabricated a DFB resonance cavity using these high-gain nanocrystals. The lasing emission was observed by optical pumping with femtosecond pulses.


The researchers used a high-pressure, low-temperature passivation approach. They found that, compared with normal-pressure hydrogen passivation at higher temperatures (greater than 500 degrees Celsius), a prolonged high-pressure passivation at relatively low temperatures contributed a full saturation of dangling bonds. This led to optical gains comparable to those achieved by gallium arsenide (GaAs) and indium phosphide (InP).

The silicon nanocrystal-embedded layer (Si NC layer) was prepared on a fused quartz substrate. The gain of the Si NC layer was measured by means of variable stripe length. To correct the measured gain, optical loss was acquired by means of a shifting excitation spot technique.

The laser showed reliable repeatability. The lasing peaks of the four samples made under similar fabrication conditions were within the spectral range of 760 to 770 nm. The team said that the variation in the lasing peak was due to the slight difference in effective refractive indices. The full width half maximum of the emission peak was narrowed from about 120 nm to 7 nm when the laser was pumped above threshold.


EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: