Loading...
News Article

Penn team gives optical switches the 'contrast' of electronic transistors

News

System is an important step towards photonic computers

In a paper published in Nature Communications, Ritesh Agarwal and colleagues at the University of Pennsylvania's School of Engineering and Applied Science have taken an important step towards photonic computing. Their aim is to make more powerful computers using light rather than electricity as the medium.

The team has been searching for right combination and physical configuration of materials that can amplify and mix light waves in ways that are analogous to electronic computer components.

Now they have managed to precisely control the mixing of optical signals via tailored electric fields, and obtain outputs with a near perfect contrast and extremely large on/off ratios. Those properties are key to the creation of a working optical transistor.

"Currently, to compute '5+7,' we need to send an electrical signal for '5' and an electrical signal for '7,' and the transistor does the mixing to produce an electrical signal for '12,'" Agarwal said. "One of the hurdles in doing this with light is that materials that are able to mix optical signals also tend to have very strong background signals as well. That background signal would drastically reduce the contrast and on/off ratios leading to errors in the output."

With background signals washing out the intended output, necessarily computational qualities for optical transistors, such as their on/off ratio, modulation strength and signal mixing contrast have all been extremely poor. Electric transistors have high standards for these qualities to prevent errors.

The search for materials that can serve in optical transistors is complicated by additional property requirements. Only "nonlinear" materials are capable of this kind of optical signal mixing.

To address this issue, Agarwal's research group started by finding a system which has no background signal to start: a nanoscale 'belt' made out of cadmium sulphide. Then, by applying an electrical field across the nanobelt, Agarwal and his colleagues were able to introduce optical nonlinearities to the system that enable a signal mixing output that was otherwise zero.

"Our system turns on from zero to extremely large values, and hence has perfect contrast, as well as large modulation and on/off ratios," Agarwal said. "Therefore, for the first time, we have an optical device with output that truly resembles an electronic transistor."

With one of the key components coming into focus, the next steps toward a photonic computer will involve integrating them with optical interconnects, modulators, and detectors in order to demonstrate actual computation.

Agarwal Lab members Ming-Liang Ren, Jacob S. Berger, Wenjing Liu and Gerui Liu all contributed to the research.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: