Loading...
News Article

Researchers develop photonic 'microprocessor'

News

Honeycomb waveguide mesh in silicon photonics chip can be configured to perform different functions

Researchers from the Institute of Telecommunications and Multimedia Applications (iTEAM) at the Universitat Politècnica de València and from the Optoelectronics Research Centre at the University of Southampton have developed the first photonic integrated chip that enables multiple functionalities by employing a single common architecture.

Its behaviour is said to be similar to the one performed in electronic microprocessors, where a common hardware is programmed to perform a desired operation. Potential applications in mobile communications and self-driven cars will benefit from the flexible and versatile performance of this device.

"By programming the internal connections of a single chip architecture, we can configure the chip to perform different functionalities." highlights José Capmany, iTEAM researcher and coordinator of the work. Their results have been published in Nature Communications.

The chip architecture relies on a honeycomb waveguide mesh implemented by properly cascading tunable light couplers developed by Daniel Pérez within the framework of his Ph.D. Thesis, under the supervision of José Capmany and Ivana Gasulla. The independent basic coupler configuration allows the definition of flexible interconnection schemes as well as the definition of different optical signal processing circuits.

"The main advantage of this approach is that the physical hardware architecture is manufactured independently from the targeted functionality to be performed, which reduces the price of design, fabrication and testing iterations", said Ivana Gasulla. The chip, once designed and tested, enables the configuration of more than 100 photonic signal processing circuits. In this work, around 30 configurations have been demonstrated, resulting, anyway, in the highest number reported to date as Daniel Pérez points out.

"The approach followed by this work represents a paradigm shift in the field of integrated photonics, from application specific photonic integrated circuits to generic purpose and programmable devices, in the same way as the one experienced successfully by the electronic field in the 80's", adds José Capmany, principal investigator of the UMWP-CHIP ERC Advanced Grant financed by the European Research Council.

Applications

Regarding its application fields, the researchers highlight self-driven cars and mobile communications, quantum computing, distributed sensors, sensing monitoring, the Internet of Things, defence, avionics and surveillance systems. In general, any field susceptible from the requirement of optical or radiofrequency signal processing.

"The small footprint of the chip enables its placement in systems with reduced size requirements, performing as the interface between radio and fibre segments. For example, in self-driven cars and avionics, it could be employed to interface the radiofrequency sensors and LIDAR from the outer part of the craft to the inner fibre optic bus", concludes Ivana Gasulla.

'Multipurpose silicon photonics signal processor core', by Daniel Pérez, Ivana Gasulla, Lee Crudgington, David J. Thomson, Ali Z. Khokhar, Ke Li, Wei Cao, Goran Z. Mashanovich & José Capmany; Nature Communications 8. doi:10.1038/s41467-017-00714-1

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: