Loading...
News Article

AXIe Announces Optical Comms Standard for Instrumentation

News

ODI spec addresses challenging applications in 5G communications, mil/aero, and advanced communication research

The AXIe Consortium has announced a new specification, Optical Data Interface (ODI), suitable for high-speed instrumentation systems addressing challenging applications in 5G communications, mil/aero, and advanced communication research.

The AXIe Consortium was joined by Conduant, Guzik Technical Enterprises, Intel, Keysight Technologies, Samtec, and Xilinx in endorsing the standard and stating their plans to offer components or instrumentation products compliant with the new standard. Though managed by the AXIe Consortium, the new standard is not specific to AXIe, and works equally well with any instrument format, whether traditional bench instrument, or AXIe, LXI, or PXI modular design.

Chris Miller, chairman of the AXIe Consortium and strategic planning manager at Keysight Technologies, sai:, "The ODI specification delivers data communication speeds simply not possible using electrical interconnects. Since it uses a small optical connector that can be placed on any instrument, it is not specific to the AXIe modular standard. For the benefit of the industry and users alike, we have decided to open it up for use by any vendor building products, regardless of form factor, and not restrict it to AXIe."

Larry Desjardin, a consultant in the industry, and chairman of the AXIe Technical Committee specifying ODI, said: "When you look at 5G or phased-array mil/aero applications, the aggregate bandwidth needed to transfer IQ data grows pretty rapidly. Electrical solutions can't even extend across a backplane, much less a racked system. But with optics, you can connect instruments up to 100 meters away if needed. The interoperability, bandwidth, and distance issues simply disappear." Desjardin added, "However, ODI is not simply a physical link standard. We've adopted the VITA 49 standards, which define data formats for software defined radios. This extends the applications from not just test and measurement, but to embedded designs as well."

The ODI standard uses three layers of technology. The physical layer is defined as optical technology consisting of 12 lanes of 14.1 Gb/s each, enabling 20 GBytes/s per optical port. Multimode fibre cables connect ports together, using the standard MPO (Multi-fibre Push On) connector. Ports may be aggregated, with four ports delivering 80 GBytes/s. The protocol layer is defined by the Interlaken standard, a device interconnect standard common in data centres, conceived by Cortina Systems and Cisco Systems. Interlaken is supported by the major FPGA suppliers, and delivers arbitrary packets over any number of lanes. The top layer specifies packets defined by the VITA 49 family of standards, also known as VRT, VITA Radio Transport. VRT packets are sent between devices using standardized data formats and context packets.

Conduant, Guzik, and Keysight all announced their intent to deliver products with ODI interfaces.

"Conduant has been a leader in high-speed storage solutions for over 20 years," said Ken Owens, CEO of Conduant Corporation. "We will be delivering storage solutions, supporting both recording and playback, using the ODI standard."

Lauri Viitas, VP of Product and Business Development at Guzik Technical Enterprises said, "Our recently announced ADP7000 digitiser and DP7000 processor products are essentially ODI products already. We co-designed these breakthrough products while the standard was being created. ODI allows us to stream two 10-bit channels at 32 Gsamples/sec each continuously to either storage, or to our 6 TeraFLOPS DP7000 Processor board. We intend to adhere to the standard as it is finalised, delivering the first ODI products to the marketplace."

"I'm pleased with how the industry companies in the AXIe Consortium have partnered to establish this common interface standard," said Jay Alexander, Keysight CTO. "Keysight is committed to accelerating innovation to connect and secure the world, and the Optical Data Interface standard is one way to make that happen. It's a cross-domain standard that will enable companies in multiple industries, from aerospace and defense to 5G communications, to address their needs for real-time streaming and other high performance data transport solutions."

Component vendors also signalled their support for the standard.

"Samtec's complete portfolio of preconfigured ODI optical interconnect solutions demonstrates Samtec's commitment to support the ODI standard," said Marc Verdiell, Chief Technology Officer of Samtec Optical Group. "The Samtec FireFly™ Micro Flyover System™ optical engine coupled with ODI-compliant optical cable assembles offers the test and measurement industry a ready-made ODI physical layer solution. Samtec will also offer standard 24-fibre ODI cable in standard lengths easing implementation of the ODI standard."

Chuck Tato, director of Wireline Communications and Test & Measurement, Intel Programmable Solutions Group, stated, "Intel's FPGA business has been an active supporter of the Interlaken protocol for many years, offering IP cores used in many customer designs across generations of FPGA product families. Interlaken IP cores running at the data rate requirement of ODI are already available with Intel Arria 10, our latest midrange product. We will ensure conformance to the ODI specifications and extend the offerings to our newest generation Intel Stratix 10 FPGA products."

"Customer applications will benefit from increased bandwidth due to the ODI specification," said Hanneke Krekels, Senior Director, Test, Measurement & Emulation Markets at Xilinx. "Xilinx offers Interlaken IP with our UltraScale™ and UltraScale+ FPGA platforms to support this new standard and is excited to see it enabling challenging instrumentation applications requiring robust implementation."

VITA, the trade association for standard computing architecture serving critical and intelligent embedded computing systems industries, also praised the standard. "We are delighted that the ODI standards committee has embraced the VITA 49 standards," stated Jerry Gipper, VITA Executive Director. "The VITA Radio Transport standards define packet structure and formatting for a wide set of software defined radio and mil/aero applications. By having it adopted by the test and measurement industry, VRT has expanded its reach, and set up numerous opportunities for synergy." Gipper added, "There is no apparent reason that ODI couldn't be adopted by the embedded industry itself, and we are investigating that opportunity."

A set of preliminary technical specifications is posted on the AXIe website, along with a technical overview. Any manufacturer may adopt the ODI specification, and a manufacturer may participate in the ODI Technical Committee by joining the AXIe Consortium.

AXIe is an instrumentation standard based on AdvancedTCA (ATCA) with extensions for instrumentation and test. AXIe Consortium membership is open to all vendors who agree with the stated goals and intend to provide solutions to the marketplace.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: