Loading...
News Article

Draper develops MEMs-based LiDAR chip

News

Single chip MEMS design enables integration of all LiDAR components with the exception of the lens

Using its expertise in MEMS and integrated photonics, US R&D company Draper has developed a low cost LiDAR chip for self-driving cars, The single chip integrates all LiDAR components, with the exception of the lens.

According to Eric Balles, director of transport and energy at Draper, the result is chip-scale LiDAR in a package designed for high-volume manufacturing by the automotive industry and others. "It's LiDAR on a chip, and nothing like it exists today in the same form factor," Balles said. "Draper's goal is a high-resolution, large field-of-view LiDAR unit that fits the critical components onto a single chip and sells for less than $50."

Draper's solid-state MEMS-based LiDAR approach is being developed to image at a range of 300 meters while providing a corresponding angular resolution targeted at less than 0.1-degrees, a significant advancement over competing LiDAR systems, many of which offer lower range and resolution. Draper's LiDAR would also be capable of scanning at a rate 20 frames of a scene every second.

Sabrina Mansur, technical director for autonomous vehicles at Draper, said "Draper's innovations in optical systems, MEMS, sensors, microsystems and microfabrication builds on decades of experience in designing, developing and deploying autonomous platforms for space, air, ground, sea and undersea needs."

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: