Loading...
News Article

Research raises hope for erbium-based integrated photonics device

News

US/Chinese team raise erbium's optical gain from a few dB to over 100 dB per cm of propagation

Following their paper in Nature Nanotechnology on the first room temperature 2D nanolaser, Arizona State University researcher Cun-Zheng Ning and Hao Sun from China's Tsinghua University have published a second breakthrough that will enable erbium to be used as an optical amplifier in small chip optical technologies. This achievement has been a decades-long goal in the field of photonic integration.

Details of the new optical amplification work 'Giant optical gain in a single-crystal erbium chloride silicate nanowire', were published in the July online edition of Nature Photonics.

Ning, an electrical engineer, and Hao Sun from China's Tsinghua University and their teams have succeeded in raising erbium's optical gain from the typical low level of a few dB to over 100 dB per centimeter of propagation. The significant increase in optical gain will make it possible for erbium-based materials to be integrated on a chip for optical amplifiers and lasers.

In 2011, Ning led a team that discovered that particular erbium silicate salt, developed as a nanowire with a slimmer profile, could be an excellent candidate as a photonics amplification material- it allows engineers to pack up to 1,000 times more erbium in optical amplifiers, lasers, quantum information devices, switches and solar power cells.

Erbium is important for many applications, especially as an optical amplifier buried along with optical fibres for communications across and between continents.

Scientists and engineers have been trying to replicate the success of signal amplification by erbium on smaller platform, such as on a small chip of an integrated photonic system. Ning's new research solves the problem that the amount of amplification in a typical erbium-doped fiber is too small, and the required length is too long, for chip-scale integration.

Although it took several years since the discovery of the erbium nanowire technology, Ning, Sun and their team were able to perform a delicate experiment on a single nanowire that revealed the intrinsic absorption coefficient. This process allowed the materials absorption to be measured accurately for the first time, and subsequently establish the extremely high optical gain, about two orders of magnitude higher than previous reported erbium materials.

"We are excited that we finally were able to establish the large optical gain we had predicted for years based on other measurements we have done," said Ning. "Based of this new single-crystal nanowire technology, our next goal is to integrate multiple devices on a silicon platform for integrated photonic circuits."

"The next step is to demonstrate an actual optical device such as an optical amplifier or a laser based on the established high optical gain," said Sun.

Other key contributors to the research are Ning's former doctoral students, Leijun Yin and Zhicheng Liu, who carried out the early research and have since graduated.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: