+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Researchers build first room temperature 2D nanolaser

News

Nanolasers could potentially send information between different points on a single computer chip

Researchers from Arizona State University and Tsinghua University, Beijing, China have built what they think is the first room temperature single layer nanolaser. Details of the new laser, which is made of 2D MoTe2 and silicon, are published in the July online edition of Nature Nanotechnology.

Single layer nanolasers have been developed before, but they all had to be cooled to low temperatures using a cryogen like liquid nitrogen or liquid helium. "Being able to operate at room temperatures opens up many possibilities for uses of these new lasers," said Cun-Zheng Ning, an ASU electrical engineering professor who led the research team.

Lasers this size could potentially send information between different points on a single computer chip or be useful for other sensing applications in a compact, integrated format.

A laser needs two key pieces "“ a gain medium that produces and amplifies photons, and a cavity that confines or traps photons. While such materials choices are easy for large lasers, they become more difficult at nanometer scales for nanolasers. The choice of two-dimensional materials and the silicon waveguide enabled the researchers to achieve room temperature operation. Excitons in MoTe2 emit in a wavelength that is transparent to silicon, making silicon possible as a waveguide or cavity material.

The laser is pumped by a continuous-wave excitation, with a threshold density of 6.6"…W cm"“2. Its line-width is as narrow as 0.202"…nm with a corresponding Q of 5,603, the largest value reported for a transition metal dichalcogenide (TMD) laser. This demonstration establishes TMDs as practical materials for integrated TMD"“silicon nanolasers suitable for silicon-based nanophotonic applications in silicon-transparent

Precise fabrication of the nanobeam cavity with an array of holes etched and the integration of 2Dl monolayer materials was also key to the project. Excitons in such monolayer materials are 100 times stronger than those in conventional semiconductors, allowing efficient light emission at room temperature.

"A laser technology that can also be made on silicon has been a dream for researchers for decades," said Ning. "This technology will eventually allow people to put both electronics and photonics on the same silicon platform, greatly simplifying manufacture."

Silicon does not emit light efficiently and therefore must be combined with other light emitting materials. Currently, other semiconductors are used, such as InP or InGaAs which are hundreds of times thicker, to bond with silicon for such applications.

The new monolayer materials combined with silicon eliminate challenges encountered when combining with thicker, dissimilar materials. And, because this non-silicon material is only a single layer thick, it is flexible and less likely to crack under stress, according to Ning.

Looking forward, the team is working on powering their laser with electrical voltage to make the system more compact and easy to use, especially for its intended use on computer chips.

'Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity', by Yongzhuo Li et al.; Nature Nanotechnology (2017).

EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: