Loading...
News Article

Photonics Breakthrough paves way for improved wireless communication systems

News

Researchers at the University of Sydney's Australian Institute for Nanoscale Science and Technology achieve radio frequency signal control at sub-nanosecond time scales on a chip-scale optical device.


Researchers from the ARC Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) in the University of Sydney's Australian Institute for Nanoscale Science and Technology have made a breakthrough achieving radio frequency signal control at sub-nanosecond time scales on a chip-scale optical device.

Radio frequency (RF) is a particular range of electromagnetic wave frequencies, widely used for communications and radar signals. The work should impact the current wireless revolution.


CUDOS and School of Physics PhD candidate at the University of Sydney, lead author Yang Liu, said the new research that could unlock the bandwidth bottleneck faced by wireless networks worldwide was undertaken at the headquarters of the Australian Institute for Nanoscale Science and Technology (AINST), the $150m Sydney Nanoscience Hub.

"Nowadays, there are 10 billion mobile devices connected to the wireless network (reported by Cisco last year) and all require bandwidth and capacity," Mr Liu said.

"By creating very fast tunable delay lines on chip, one eventually can provide broader bandwidth instantaneously to more users."

"The ability of rapidly controlling RF signal is a crucial performance for applications in both our daily life and defence."

"For example, to reduce power consumption and maximise reception range for future mobile communications, RF signals need to achieve directional and fast distributions to different cellular users from information centres, instead of spreading signal energy in all directions."

The lack of the high tuning speed in current RF technique in modern communications and defence, has motivated the development of solutions on a compact optical platform. These optical counterparts had been typically limited in performance by a low tuning speed on the order of milliseconds (1/1000 of a second) offered by on-chip heaters, with side effects of fabrication complexity and power consumption.

"To circumvent these problems, we developed a simple technique based on optical control with response time faster than one nanosecond: a billionth of a second "“ this is a million times faster than thermal heating," said Mr Liu.

CUDOS Director and co-author Professor Benjamin Eggleton, who also heads the Nanoscale Photonics Circuits AINST flagship, said the technology would not only be important for building more efficient radars to detect enemy attacks but would also make significant improvements for everyone.

"Such a system will be crucial not only to safeguard our defence capabilities, it will also help foster the so-called wireless revolution "“ where more and more devices are connected to the wireless network," Professor Eggleton said.

"This includes the internet of things, fifth generation (5G) communications, and smart home and smart cities."

"Silicon photonics, the technology that underpins this advance, is progressing very quickly, finding applications in datacentres right now."

"We expect the applications of this work will happen within a decade in order to provide a solution to the wireless bandwidth problem. We are currently working on the more advanced silicon devices that are highly integrated and can be used in small mobile devices," Professor Eggleton said.




David Marpaung, Benjamin Eggleton, Yang Liu and Amol Choudhary inside the Sydney Nanoscience Hub, pointing at a thumbnail-size chip being evaluated in the broadband microwave testbed.


By optically varying the control signal at gigahertz speeds, the time delay of the RF signal can be amplified and switched at the same speed, as shown in Figure 1.



Figure 1: Schematic illustration of the fast control of RF signals


The research builds on research supported by the Australian Research Council through CUDOS, a Centre of Excellence.

Mr Liu and fellow researchers Dr Amol Choudhary, Dr David Marpaung and Professor Benjamin Eggleton achieved this on an integrated photonic chip, paving the way towards ultrafast and reconfigurable on-chip RF systems with unmatched advantages in compactness, low power consumption, low fabrication complexity, flexibility and compatibility with existing RF functionalities.

T
he research builds on research supported by the Australian Research Council through CUDOS, a Centre of Excellence.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: