Loading...
News Article

Dutch researchers develop 1,000 times more efficient nano-LED

Technology could open door to optical data transmission between and within microchips

Researchers at Eindhoven University of Technology have developed an LED of some hundred nanometers with an integrated light channel (waveguide) to transport the light signal.

This integrated nano-LED is said to be 1000 times more efficient than the best variants developed elsewhere. The findings were published in the online journal Nature Communications.

The team has made particular progress in the quality of the integrated coupling of the light source and the waveguide. The efficiency of the new nano-LED currently lies between 0.01 and 1 percent, but the researchers expect to be well above that figure soon thanks to a new production method.

A key characteristic of the new nano-LED is that it is integrated into a silicon substrate on a membrane of InP. Furthermore, tests reveal that the new element converts electrical signals rapidly into optical signals and can handle data speeds of several gigabits per second.

With electronic data connections within and between microchips becoming a bottleneck in the exponential growth of data traffic worldwide, optical connections are the obvious successors. But optical data transmission requires an adequate nanoscale light source, and this has been lacking. The researchers in Eindhoven believe that their nano-LED might be a viable solution that will take the brake off the growth of data traffic on chips.

However, they are being cautious about future prospects as the development is at too early  a stage to be exploited by industry at the moment, and the production technology that is needed still has to get off the ground.

The study is part of the Dutch Gravitation Programme 'Research Centre for Integrated Nanophotonics' being performed at TU/e. The Institute for Photonic Integration of TU/e is one of the world's leading research institutes for integrated photonics.

'Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon' by V. Dolores-Calzadilla et al; Nature Communications, 2 February 2017.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: