+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Optical amplifier is smaller than a paper clip

Scientists use ultra-silicon-rich nitride (USRN) platform to make low cost, compact telecoms amplifier


Above: Optical signals propagating through a USRN waveguide undergo 42.5dB of optical parametric amplification.

Researchers at the Singapore University of Technology and Design (SUTD), A*STAR Data Storage Institute and the Massachusetts Institute of Technology (MIT) have developed a tiny optical amplifier able to amplify light by 17,000 times at telecommunications wavelengths. They reported the results in Nature Communications on January 4th 2017.

The team used a proprietary platform called ultra-silicon-rich nitride (USRN), with a material composition of seven parts silicon, three parts nitrogen, with the large nonlinearity and photon efficiency needed for high gain amplification, through the efficient transfer of photons from a pump to the signal.

"To give a sense of the scale, a conventional optical parametric amplifier costs several hundred thousand dollars, and occupies an entire optical table, while the newly developed amplifier is much smaller than a paper clip, and costs a fraction of the former," said SUTD's Dawn Tan, who led the development of the amplifier.

Providing high gain on such a small footprint could enable new opportunities in low cost broadband spectroscopy, precision manufacturing and hyperspectral imaging. The device's efficiency is also revealed through cascaded four wave mixing, which is a higher order mixing of the amplified and converted photons. This phenomenon also allows the amplifier to operate as a tunable broadband light source, enabling cheaper and more efficient spectroscopic sensing and molecular fingerprinting than what is available today.

"The inefficiencies in highly nonlinear photonic devices are overcome here, by photonic device engineering for maximum nonlinearity, while still maintaining a sufficiently large bandgap to eliminate two-photon absorption at the telecommunications wavelength. We believe this is one of the highest gains demonstrated at the telecommunications wavelength to date on a CMOS chip" said Tan.

Achieving ultra-large amplification while maintaining high compactness was possible because the researchers managed to design and implement an amplifier which operates simultaneously with a high nonlinearity and photon efficiency. In other platforms which are compatible with processes used in the electronics industry today, either the nonlinearity or photon efficiency is low.

"The results demonstrate the ultra-silicon-rich nitride platform to be extremely promising for highly efficient nonlinear optics applications, particularly in the field of CMOS photonics leveraging existing electronics infrastructure," says Doris Ng, a scientist at the A*STAR Data Storage Institute.

EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: