+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

LETI announces protoype of low-cost photo-acoustic sensors for gas detection

News

Leti, a research institute of CEA Tech, has announced prototype development of highly miniaturized, portable optical sensors for chemical detection of gas.

The next-generation, centimetre-size photo-acoustic sensors are based on mid-infrared photonic integrated circuits (MIR PICs). These silicon PICs, created by integrating optical circuits onto millimetre-size silicon chips, make extremely robust miniature systems, in which discrete components are replaced by on-chip equivalents. This makes them easier to use and reduces their cost dramatically, expected at least by a factor of 10.

Developed by the European Commission’s REDFINCH Project headed by CEA-Leti, the prototype photo acoustic sensors were fabricated on a CMOS line in a miniaturized silicon photo-acoustic cell, which allows extreme integration.

In demonstrations, the sensors match the performance of bulky commercial gas-sensing systems commonly available today. They are targeted at applications such as process gas analysis in refineries, gas leak detection in petrochemical plants and pipelines, and protein analysis in liquids for the dairy industry.

An invited paper on the breakthrough, “Photo-acoustic cell on silicon for mid-infrared QCL-based spectroscopic analysis”, won Best Paper Award at Photonics West 2019.

The sensors aims to consume less than 10W in continuous operation. They can be operated in a slow pulse-burst mode for infrastructure monitoring and when leaks are detected, the pulse frequency of the sensor automatically increases. This keeps average power consumption very low so the sensors can be battery-operated for more than a year or powered by an ambient energy harvester, e.g. a solar cell.

“The big picture is that the miniaturization of photo-acoustic spectroscopy based on quantum cascade lasers (QCLs) is entering the stage of mass production,” said Jean-Guillaume Coutard, an instrumentation engineer at Leti, who coordinate the project.

To develop these chemical sensors, the REDFINCH consortium overcame the challenge of implementing their capabilities in the important mid-infrared region, where many important chemical and biological species have strong absorption fingerprints.

“This allows both the detection and concentration measurement of a wide range of gases, liquids and biomolecules,” Coutard said. “This is crucial for applications such as health monitoring and diagnosis, detection of biological compounds and monitoring of toxic gases.”

“This project is a perfect fit for mirSense’s development roadmap. Our mission is to democratize QCL usage,” said Mathieu Carras, CEO of mirSense, which participated in the project. “mirSense is ready to produce these state-of-the-art integrated QCL-based components and do a similar job on electronics and software to bring the value of this technology to the market.”

The consortium members and contributions include:

• Cork Institute of Technology (Ireland) – PIC design & fabrication, hybrid integration

• Université de Montpellier (France) – Laser growth on Si, photodetector growth

• Technische Universität Wien (Austria) – Liquid spectroscopy, assembly/test of sensors

• mirSense (France) – MIR sensor products, laser module integration

• Argotech a.s. (Czech Republic) Assembly/packaging of PICs

• Fraunhofer IPM (Germany) – Gas spectroscopy, instrument design/assembly

• Endress+Hauser (Germany) Process gas analysis and expertise, testing validation.

UniversityWafer announces new supply silicon-on-insulator substrates
Paratus deploys Infinera GX Series in superhighway network
The first universal, programmable, multifunctional photonic chip
Intel Ignite launches its European cohort of Spring 2024
A large-scale photonic chiplet to power artificial general intelligence
Aeva creates Automotive Center of Excellence in Germany
Luceda Photonics releases new Test Design Kit
PhotonVentures’ second fundraising round brings total to €75 million
New edition of IPSR-I photonics roadmap published
Luceda Photonics and Alter Technology collaborate on PIC assembly
Alcyon Photonics and Applied Nanotools collaborate on photonics PDK
Aire Networks deploys Infinera’s ICE-X pluggable solution
Nexus participates in airborne hazard detection project
CMC Microsystems and ventureLAB support semiconductors in Canada
Startups selected for Luminate NY accelerator announced
POET and MultiLane partner on transceivers
Rapid Photonics receives €300,000 for lithium niobate PIC production
Lumentum announces improvements to 800ZR+ transceivers
Teramount and GlobalFoundries cooperate on silicon photonics
StarIC teams up with GlobalFoundries on silicon photonics
Marvell demonstrates 200G 3D silicon photonics engine
Alphawave Semi and InnoLight collaborate on linear pluggable optics
NewPhotonics introduces PIC with integrated optical equaliser
Pilot Photonics secures €2.5 million from European Innovation Council
Ranovus collaborates with MediaTek on 6.4T co-packaged optics
Stellantis Ventures invests in SteerLight silicon photonics LiDAR
Semilux launches programme to develop LiDAR for autonomous vehicles
Coherent recognises Tower Semiconductor with Outstanding Innovation and Technology Supplier Award
photonixFAB Consortium now open for first prototyping
Roadmap to drive PIC industry forward unveiled
European quantum experts team up on photonic quantum computing
OpenLight Partners with VLC Photonics to Expand Design and Test Capacity

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: