+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Nokia to Unveil Bidirectional Fiber for Data Centers

News

Engineers at Nokia have demonstrated real-time, high capacity optical signal transmission suitable for coupling adjacent data centers with current compliance standards. The team has announced it will present its findings at OFC 2018 in San Diego, California (USA) on 11th March.

The work by Nokia follows experimental demonstrations of cutting edge, "off-line" signal transmission mechanisms. The Nokia team has subsequently demonstrated the principles on-line as a real-time bidirectional transmission system; Nokia's most recent work with the technology included the bi-directional transmission of 78 interleaved, 400 gigabit per second (Gb/s) channels with a 31.2 terabit per second (Tb/s) fiber capacity.

At twice the 200 Gb/s standard rate found in most applications, the C-band signals were transmitted over a single, 90-kilometer-long single-mode fiber. Such a high transmission capacity and rate would offer a particularly attractive capacity bump to current data center interconnections, where nearby data centers are coupled together to form a single, larger center, according to the researchers.

Fundamentally speaking, there are two ways to go about increasing a data center's capacity: either increase the number of (parallel) fibers through which the data travels, or, increase how much data can be transmitted through existing fibers. While the use of additional fibers is a more straightforward approach (particularly for data centers which usually rent fibers to use), it is expensive both in price and power consumption.

Unsurprisingly, there is considerable interest in finding ways of increasing the transmission capacity of fibers already in use. As multiplexers (devices that combine multiple signals into one) and transponders become more sophisticated, so do the available signal encoding/decoding processes. Current standards for wavelength division multiplexed (WDM) signals, for instance, can combine up to 96 channels on C band.

The off-line proof-of-principle experiments first demonstrating the high capacity, error-free 400 Gb/s WDM transmission capitalized on a very high spectral efficiency to boost capacity in the fiber. While this is not the first real-time implementation of 400 Gb/s channels, it is the first to be successful with an impressive 8 bit per second-per hertz spectral efficiency.

"So far, three different companies have demonstrated a real-time 400 Gb/s transponder over the last three years, but we are the only ones reporting 400 Gb/s with such high spectral efficiency," said Thierry Zami, who will present the team's work during the OFC. "The spectral efficiency allows us to provide quite a large fiber capacity. So, in this case we claim 31.2 Tb/s, but in practice, without the limitations in terms of number of loading channels in our lab, we could have reached about 38 Tb/s over whole C band. This is really one of the innovative points."

In addition to using the real-time, commercially available transponders, the setup used components that are compliant with current network standards. After testing the unidirectional transmission configuration, Zami said he and his team wanted to further improve the resulting Q2 margins, which represent the signal to noise power ratio.

"It was important for us to maintain simple amplification, only based on erbium doped fiber amplifiers, and to use standard fibers," said Zami. "To increase the system margins observed with the unidirectional set up, we could have decided to make the same unidirectional experiment with slightly larger channel spacing, for instance. But we said, "˜no' because we wanted to remain compliant as much as possible with the standard grid."

The team developed a bi-directional transmission set up with the same 90-kilometer fiber, where the even and odd 400 Gb/s channels, with the same 50 GHz grid spacing, transmit in opposite directions. For this configuration, they measured Q2 margins at least twice as large as for the unidirectional version. And because it employed two 100 GHz-spaced multiplexers to create the 50 GHz channel spacing, unlike the unidirectional system's individual 50 GHz multiplexer, it benefits from wider filtering to exhibit better tolerance to frequency detuning.

EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: