+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

Continuous monitoring of chemicals in the pharmaceutical industry 


Ana Gonzalez and Jose Pozo of the European Photonics Industry Consortium (EPIC) highlight pilot-line opportunities for companies looking to introduce novel Mid-IR sensors in the market.

Chemicals are widely employed across a range of industrial sectors allowing the manufacturing of many of the products that we use daily. From an apple to a car, chemicals can be employed at multiple points the production supply chain. However, their uncontrolled use can risk serious contamination of the environment, food production chain, and healthcare services.

For this reason, the pharmaceutical industry is heavily controlled to ensure the composition of drugs administered to patients. Related chemical processes require strict quality checks to assess the purity, reproducibility, homogeneity, and warn of the presence of contaminants, among other factors. Current evaluation techniques include sampling, transportation to a specialized laboratory, purification of the sample (which is done by skilled personnel), and the final detection using bulky and expensive equipment. Since these actions are time-consuming and costly, and usually the sample is destroyed during the analysis, only a small fraction of the final drug can be analysed. In addition, these analytical tools are bulky and requires optimization and calibration steps, which creates a hurdle for in-line monitoring.

Batch versus continuous manufacturing

In many cases, batch pharmaceutical manufacturing (where all the materials are charged before the start of processing and discharged at the end of processing) is now replaced by cleaner, flexible and more efficient continuous manufacturing, which can avoid off-line delays. In a continuous manufacturing process, material is simultaneously charged and discharged from the process.

Continuous manufacturing has some advantages when comparing with batch manufacturing such as no manual handling is required, increased safety, shorter processing times, more flexible operation and smaller ecological footprint. However, how to warranty that the product has a uniform content and quality within specified limits? Clearly, the answer is related to the implementation of in-line monitoring detection tools in the manufacturing process.

Mid-IR platform

Mid-Infrared (Mid-IR) technology is based on the strong interaction of light with molecular vibrations. Spectroscopic sensing in the Mid-IR wavelength band (3-12 µm) is a powerful analytical tool since the chemicals exhibit their fingerprint region, intense adsorptions that allow unambiguous identifications and quantifications of molecules.

A Mid-IR sensor consists of: i) a laser source, usually Interband Cascade Lasers (ICLs) and Quantum Cascade Lasers (QCL), ii) the passive components (PICs) or free-optics, and iii) a detector (type-II InAs/GaSb superlattice (T2SL), InAsSb and Quantum Cascade Detectors (QCD)). Packaging of the final devices includes the integration of the photonics components and the electronics on the same platform which reduce the size of the sensing system (see image below). Other advantages are a high sensitivity and selectivity, which allows unattended, direct and fast detection of the sample without the requirement of any pretreatment - fundamental requisites to integrate these devices into manufacturing lines.

Photodetectors integrated with electronics.

The increasing attention of the scientific community to Mid-IR sensing has driven several studies demonstrating the enormous potential of the Mid-IR technology (see Ref [1] as an example). Regarding new devices for quality control in pharma, it is helpful to highlight the work recently presented by Li et al. in which they develop a Mid-IR imaging system enabling mapping both active pharmaceutical ingredients and excipients of a drug tablet [2].

MIRPHAB "“ pilot production of Mid-IR sensors
Since the demand for continuous monitoring of chemical production is getting bigger, high growth for spectrometer sensor systems could be expected in future years. A 2016 report indicated that the total market of compact spectrometers will increase from $157M in 2015 to $297M in 2021 [3]. New applications will be fulfilled by using these technologies, and novel devices must be designed and tested, which will require the involvement of new manufacturing players.

The objective of MIRPHAB Pilot Line (Mid-Infrared Photonics Devices Fabrication for Chemical Sensing and Spectroscopic Applications) is to help these new actors in the field of Mid-IR chemical sensing. MIRPHAB is a unique opportunity for small-medium companies that want to introduce novel Mid-IR sensors in the market. MIRPHAB offers a single-access point to the best Mid-IR facilities and expertise in Europe allowing the production of prototypes, and assuring the supply of components for the next generation of chemical sensors based on Mid-IR technologies.

PIC International to return to Brussels – bigger and better than ever!

The leading global integrated photonics conference and exhibition will once again bring together key players from across the value chain for two-days of strategic technical sessions, dynamic talks and unrivalled networking opportunities.

Join us face-to-face on 18-19 April 2023

  • View the agenda.
  • 3 for the price of 1. Register your place and gain complementary access to TWO FURTHER industry leading conferences: CS International and Power Electronics International.
  • Email info@picinternational.net  or call +44 (0)24 7671 8970 for more details.


Picocom and Antevia collaborate on 5G in-building solutions
Fast, narrow-linewidth tunable laser is a first
Luceda Photonics and Spark Photonics announce partnership
Imec demonstrates co-integration of high-quality SiN waveguide technology with silicon photonics platform
Toptica acquires Azurlight Systems
CEA-Leti Will Highlight Progress on Key Augmented Reality Building Blocks
Trumpf Venture invests in quantum startup
Trumpf to show latest lasers at Photonics West 2023
OpenLight appoints Adam Carter as CEO
Dutch consortium invests €3.5M in LioniX
POET releases optical engines for 100G, 200G and 400G
Thorlabs to acquire JML Optical
Vector appoints factory applications engineer
Trumpf expands VCSEL portfolio
Needle-free blood glucose monitoring
Vector Photonics appoints Peter Linton to drive PCSEL design
Closing the 'terahertz gap'
LioniX International Secures €3.5M Investment
Novel laser can transmit 200Gbps over 10km
III-V Lab counts on Riber MBE
US centre to tackle processor energy efficiency
High-performance Visible-light Lasers that Fit on a Fingertip
ANELLO Photonics Announce Silicon Photonics Optical Gyroscope
FBH presents latest light sources at Photonics West 2023
NIST and AIM team up on photonics chips
OpenLight unveils 800G DR8 PIC design to advance datacenter Interconnect industry
Characterisation of VCSELs, µLEDs and AR/VR displays
Vector Photonics fast-tracks PCSEL commercialisation
Changing the color of quantum light on an integrated chip
Jenoptik receives Thuringia Innovation Award 2022 for opto-electronic UFO Probe®Card
Silicon photonics is driven by data center applications
Scantinel lands €10M for next gen LiDAR

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: